

MODELLING AND NATURAL CONVECTIVE HEAT TRANSFER FROM INCLINED NARROW PLATES

DACHEPALLY SANJEEVKUMAR¹, CH. RAJESHWAR GOUD², Dr. SRIDHAR REDDY³

¹ (P.G Student, Department of MECH, Nishitha College of Engineering, TS, INDIA).

² (Assistant Professor, Department of MECH, Nishitha College of Engineering, TS, INDIA).

³ (Professor & HOD, Department of MECH, Nishitha College of Engineering, TS, INDIA).

ABSTRACT: Natural Convection flow in a vertical channel with internal objects is encountered in several technological applications of particular interest of heat dissipation from electronic circuits, refrigerators, heat exchangers, nuclear reactors fuel elements, dry cooling towers, and home ventilation etc. In this thesis the air flow through vertical narrow plates is modeled using PRO-E design software. The thesis will focus on thermal and CFD analysis with different Reynolds number ($2 \times 10^6 \& 4 \times 10^6$) and different angles ($0^0, 30^0, 45^0 \& 60^0$) of the vertical narrow plates. Thermal analysis done for the vertical narrow plates by steel, aluminum & copper at different heat transfer coefficient values These values are taken from CFD analysis at different Reynolds numbers. In this thesis the CFD analysis to determine the heat transfer coefficient, heat transfer rate, mass flow rate, pressure drop and thermal analysis to determine the temperature distribution, heat flux with different materials. 3D modeled in parametric software Pro-Engineer and analysis done in ANSYS.

Keywords: Temperature, Stress, Strain, Thermal barrier

IJMTARC - VOLUME - VI - ISSUE - 24, OCT-DEC, 2018

1. INTRODUCTION

1.1 Natural Convection: In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient encountered in natural convection is also low.

1.2 Mechanisms of Natural Convection: Consider a hot object exposed to cold air. The temperature of the outside of the object will drop (as a result of heat transfer with cold air), and the temperature of adjacent air to the object will rise. Consequently, the object is surrounded with a thin layer of warmer air and heat will be transferred from this layer to the outer layers of air.

1.2.1 Natural Convection

IJMTARC

ISSN: 2320-1363

Natural convection is a mechanism, or type of heat transport, in which the fluid motion is not generated by any external source (like a pump, fan, suction device, etc.) but only by density differences in the fluid occurring due to temperature gradients. In natural convection, fluid surrounding a heat source receives heat, becomes less dense and rises. The surrounding, cooler fluid then moves to replace it..

2. LITERATURE REVIEW

In 1972, Aung et al. [12] presented a coupled numerical experimental study. Under isothermal conditions at high Rayleigh numbers their experimental results were 10% lower than the numerical ones. This difference has also been observed between Bodoia's and Osterle's numerical results [8] and Elenbaas' experimental ones [7]. They ascribed the discrepancies to the assumption of a flat velocity profile at the channel inlet. However, the difference could also be attributed to the 2D hypothesis for the numerical simulations. In their 2D simulations in 1981, Dalbert et al. [13] introduced a pressure loss at the channel inlet in order to satisfy the Bernoulli equation between the hydrostatic conditions far from the channel and the channel inlet. Their results agreed better with the vertical flat plate regime than those of previous studies.

3. RELEATED STUDY

3.1 INTRODUCTION TO CREO: PTC CREO, in advance ask as Pro/ENGINEER, is three-D modeling groupware bundled software cause to bear in mechanical touching, cartoon, up, and in CAD drafting jobholder firms. It co act of one's eminent three-D CAD modeling battle so pre-owned a control-based parametric device. Using parameters, extent and capabilities to seize the posture of your brand, it may invigorate the development amplify in supplement to the mark itself. The prescribe present within comprehend in 2010 against Pro/ENGINEER Wildfire to CREO. It exchanges toward demon with by abject of the usage of one's creed who progressed it, Parametric Technology Company (PTC), at any start surrounding the unencumbered of its followers of geography crops the one in question establish plan whatever constitute of welding modeling, 2D orthographic frisk for vocational draft.

2

ISSN: 2320-1363

3.2 MODELLING

Vertical narrow plate at 0⁰ 3D model

vertical narrow plates at 30⁰ 2D models

Vertical narrow plate at 30⁰ 3D model

Vertical narrow plate at 45[°] 3D model

Vertical narrow plate at 60⁰ 3D model

vertical narrow plates at 60⁰ 2D models

ISSN: 2320-1363

ISSN: 2320-1363

VERTICAL NARROW PLATE SURFACE MODELS

Vertical narrow plate at 0⁰ 3D models Vertical narrow plate at 30⁰ 3D models Vertical narrow plate at 45[°] 3D models

Vertical narrow plate at 60⁰ 3D models

3.3 CFD ANALYSIS OF VERTICAL NARROW PLATES REYNOLDS NUMBER 2×10^6 , 4×10^6

FLUID -AIR

|--|--|--|--|

3.4 VERTICAL NARROW PLATE AT 0⁰ REYNOLDS NUMBER - 2×10⁶

STATIC PRESSURE

VELOCITY

HEAT TRANSFER COEFFICIENT

ISSN: 2320-1363

MASS FLOW RATE

HEAT TRANSFER RATE

(W)	Total Heat Transfer Rate	(kg/s)	Mass Flow Rate
5974630.5 -6031706 0	inlet outlet walltrm_srf	79.311401 196.93365 -79.3256 0	inlet interiortrm_srf outlet wall- trm srf
-57075.5	Net	-0.014198303	Net

3.5 THERMAL ANALYSIS

IMPORTED MODEL

MESHED MODEL

BOUNDARY CONDITIONS

3.6 VERTICAL NARROW PLATE AT 0⁰ MATERIAL – COPPER

TEMPERATURE

HEAT FLUX

ISSN: 2320-1363

3.7 COMPARISON OF CFD RESULTS AT DIFFERENT REYNOLDS NUMBERS

Reynolds number	Models	Pressure (Pa)	Velocity (m/s)	Heat transfer co- efficient (w.m²-k)	Mass flow rate (lig 5)	Heat transfer rate (W)
	O.	2.59#+04	2.22e+02	3.14++02	0.0141983	37075.5
2-104	300	3.25e+04	3.80e+02	3.39e+02	0.13510132	2022.375
	459	6.49e+04	3.40e+02	4.06e+02	0.246078	3677.875
	600	1.16e+05	5.01e+02	4.93e+02	0.50804138	9873.625
4×10 ⁴	0°	1.03e+05	4.44e+02	5.52e+02	0.02565	120081
	30 ^p	1.31e+05	5.60e+02	5.96e+02	0.86120605	12874.25
	45"	2.57e+05	6.80e+02	7.09++02	0.611465	9129
	600	4.65e+05	1.00e+03	8.55e+02	1.05348	20294.23

3.8 COMPARISON OF THERMAL RESULTS AT DIFFERENT MATERIALS

Models	Materials	Temperature (°C)		Heat flux (w/mm ²)
		Max.	Min.	
00	Steel	343	333.99	0.14103
	Aluminum	343	339.2	0.15159
	Copper	343	341.76	0.15657
300	Steel	343	331.7	0.17153
	Aluminum	343	338.22	0.18744
	Copper	343	341.41	1.1951
450	Steel	343	329.74	0.20385
	Aluminum	343	341.08	0.23701
	Copper	343	337.26	0.22608
60°	Steel	343	325.73	0.3144
	Aluminum	343	335.2	0.35993
	Copper	343	340.34	0.38359

4 CONCLUSION

In this thesis the air flow through vertical narrow plates is modeled using PRO-E design software. The thesis will focus on thermal and CFD analysis with different Reynolds number $(2 \times 10^6 \& 4 \times 10^6)$ and different angles $(0^0, 30^0, 45^0 \& 60^0)$ of the vertical narrow plates. Thermal analysis done for the vertical narrow plates by steel,

ISSN: 2320-1363

aluminum & copper at different heat transfer coefficient values. These values are taken from CFD analysis at different Reynolds numbers. By observing the CFD analysis the pressure drop & velocity increases by increasing the inlet Reynolds numbers and increasing the plate angles. The heat transfer rate increasing the inlet Reynolds numbers, more heat transfer rate at 0^0 angles. By observing the thermal analysis, the taken different heat transfer coefficient values are from CFD analysis. Heat flux value is more for copper material than steel& aluminum. So we can conclude the copper material is better for vertical narrow plates.

5. REFERENCES

 Arpaci, V. S., 1995, "Buoyant Turbulent Flow Driven by Internal EnergyGeneration," Int. J. Heat Mass Transfer, Vol. 38, pp. 2761-2770.Asfia, F. J., and Dhir, V. K., 1994, "An 2.Experimental Study ofNarural Convectionin a Volumetrically Heated Spherical Pool With Rigid Wall," ASME Paper 94-WA/H7--26.

3.Cheung, F. B., i980a, "HeatSource-Driven Thermal Convection at Arbirrary Prandtl Numbers," J. Fluid Mech., YoL 97, pp. 743-758.

4. Cheung, F. B., 1980b, "The Boundry Layer Behavior in Transient Turbulent Thermal Convection Flow," ASME JoURNAL oF HEAr TRANSFERV, ol. 102, pp.373-375.

5.Cheung, F. B., 1978, "Turbulent Thermal Convection in a Horizontal FluidLayer With Time Dependent Volumetric Energy Sources." AIAA/ASME Thermo physics and Heat Transfer Conf.,78-HT-6, Palo Alto.

